At VMG we work to ensure the performance and reliability of our software is unparalleled. Our experienced and friendly support team is always ready to answer questions you may have.
PIPELINES AND GATHERING NETWORKS

- Model large scale pipelines and gathering networks using a robust dynamic network solver
- There’s no need for adjusts, solvers, or controllers
- Simplify your inputs
- Only pressures or flows are needed at boundary conditions; flow paths are automatically calculated based on pressures, hydraulics, and equipment sizes/geometry

- Get a higher level of accuracy in pressure drop and liquid holdup compared to empirical correlations with robust multiphase flow correlations that are based on mechanistic models, such as Petalas and Oliemans
- Calculate multiphase choke flow and track kinetic energy/static head across the entire flowsheet
- Model pipe tees with the Miller model, enabling more accurate predictions of pressure drop through tees
- Rigorous heat transfer and losses are continuously updated in dynamic model

FINALLY, A PROCESS SIMULATOR THAT CAN MODEL PIPELINE PIGGING

Define hydraulic details and equipment sizes/geometry, enabling capacity evaluations and de-bottleneck studies. These inputs allow detailed equipment design, such as separator sizing for correct holdup, and inventory.

- Insert pigs directly in the pipeline or through the pig launcher (i.e. mixer) in the dynamic model
- Track pig location and velocity throughout the gathering system/network
- Predict liquid holdup and pressure loss as pig proceeds down the pipe and sweeps liquid ahead
- Pig one pipe or multiple pipes—there’s no limit to the number of pipes in a network that can be pigged
- Analyze different control mechanisms to mitigate large liquid slugs leaving the pipeline into the downstream slug catcher
- Use Scheduler block to develop a pigging schedule for pipelines at regular intervals

SLUGGING

- Calculate liquid holdups and slugs induced by elevation/terrain changes in pipelines—important for configurations such as risers
- Calculate slugging based on flowrate and operational conditions
- Monitor the formation and burping of liquid slugs in pipelines
- Evaluate slug catchers based on liquid slugs/holdup instead of steady state values

An example of a full dynamic gas plant model in VMGSim connected to a virtual delta-v system

- Calculate liquid holdups and slugs induced by elevation/terrain changes in pipelines—important for configurations such as risers
- Calculate slugging based on flowrate and operational conditions
- Monitor the formation and burping of liquid slugs in pipelines
- Evaluate slug catchers based on liquid slugs/holdup instead of steady state values